UN CO RR EC TE D PR O O F 1 BDDC for Higher - Order Discontinuous Galerkin 2 Discretizations 3

نویسنده

  • David Darmofal
چکیده

A Balancing Domain Decomposition by Constraints (BDDC) method is presented 13 for the solution of a discontinuous Galerkin (DG) discretization of a second-order 14 elliptic problem in two dimensions. BDDC was originally introduced in [8] for the 15 solution of continuous finite element discretizations. Mandel and Dohrmann [13] 16 later proved a condition number bound of κ ≤ C(1 + log(H/h))2 for precondi17 tioned system of a continuous finite element discretization of second order ellip18 tic problems. Pavarino [15] and Klawonn et al. [11] extended the BDDC algorithm 19 to higher-order finite element methods and proved a condition number bound of 20 κ ≤ C(1+ log(p2H/h))2. Further analysis of BDDC methods and their connection 21 to FETI methods has been presented in [12, 14]. 22

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UN CO RR EC TE D PR O O F 1 A Hybrid Discontinuous Galerkin Method 2 for Darcy - Stokes Problems 3

We propose and analyze a hybrid discontinuous Galerkin method for the solution 10 of incompressible flow problems, which allows to deal with pure Stokes, pure Darcy, and 11 coupled Darcy-Stokes flow in a unified manner. The flexibility of the method is demonstrated 12 in numerical examples.

متن کامل

UN CO RR EC TE D PR O O F 1 A Domain Decomposition Solver for the Discontinuous 2 Enrichment Method for the Helmholtz Equation 3

The discontinuous enrichment method (DEM) [4] for the Helmholtz equation ap9 proximates the solution as a sum of a piecewise polynomial continuous function and 10 element-wise supported plane waves [5]. A weak continuity of the plane wave part 11 is enforced using Lagrange multipliers. The plane wave enrichment improves the ac12 curacy of solutions considerably. In the mid-frequency range, seve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013